Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Microbiol Spectr ; 10(5): e0056322, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2053135

ABSTRACT

The emergence of the SARS-CoV-2 B.1.617.2 lineage (Delta variant) in 2021 was associated with increased case numbers and test positivity rates, including a large number of infections in fully vaccinated individuals. Here, we describe the findings of an investigation conducted in Tompkins County, New York, to evaluate factors underlying a significant uptick in the number of coronavirus disease 2019 (COVID-19) cases observed in the months of July and August 2021. We performed genomic surveillance and genotyping as well as virological assessments to determine infectivity of the virus in a select number of clinical diagnostic samples. Genomic sequence analyses revealed complete replacement of the B.1.1.7 lineage (Alpha variant) with the B.1.617.2 lineage (Delta variant) between July 1 and August 4 2021. We observed a strong association between viral RNA loads detected by real-time reverse transcriptase PCR and infectious virus detected in respiratory secretions by virus titration. A marked increase in positive cases among fully vaccinated individuals was observed. The sequence divergence between two index Delta variant cases in April and May, and the cases after July 1st, revealed independent Delta variant introductions in Tompkins County. Contact tracing information enabled the detection of clusters of connected cases within closely related phylogenetic clusters. We also found evidence of transmission between vaccinated individuals and between vaccinated and unvaccinated individuals. This was confirmed by detection and isolation of infectious virus from a group of individuals within epidemiologically connected transmission clusters, confirming shedding of high viral loads and transmission of the virus by fully vaccinated individuals. IMPORTANCE The SARS-CoV-2 lineage B.1.617.2 (Delta variant) emerged in Asia and rapidly spread to other countries, becoming the dominant circulating lineage. Worldwide infections with B.1.617.2 peaked at a time in which vaccination rates were increasing. In this study, we present data characterizing the emergence of SARS-CoV-2 lineage B.1.617.2 (Delta variant) in Tompkins County, New York, which has one of the highest vaccination rates in the state. We present evidence demonstrating infection, replication, and transmission of SARS-CoV-2 lineage B.1.617.2 (Delta variant) between fully vaccinated individuals. Importantly, infectious virus loads were determined in a subset of samples and demonstrated shedding of high viral titers in respiratory secretions of vaccinated individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , Phylogeny , COVID-19/epidemiology
2.
Emerg Infect Dis ; 27(12): 3171-3173, 2021 12.
Article in English | MEDLINE | ID: covidwho-1528797

ABSTRACT

We report infection of 3 Malayan tigers with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 (Alpha) variant at a zoologic park in Virginia, USA. All tigers exhibited respiratory signs consistent with SARS-CoV-2 infection. These findings show that tigers are susceptible to infection with the SARS-CoV-2 B.1.1.7 variant.


Subject(s)
COVID-19 , Tigers , Animals , Humans , SARS-CoV-2 , Virginia/epidemiology
3.
J Vet Diagn Invest ; 33(1): 80-86, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-920981

ABSTRACT

In the United States, horses are used for a variety of purposes including recreation, exhibition, and racing. As farm, performance, and companion animals, horses are a unique species from a zoonotic disease risk perspective, and the risks of subclinical infections spreading among horses can pose challenges. Using a nanoscale real-time PCR platform, we investigated the prevalence of 14 enteric pathogens, 11 Escherichia coli genes, and 9 respiratory pathogens in fecal samples from 97 apparently healthy horses at a multi-day horse event. In addition, sugar flotation test was performed for fecal parasites. E. coli f17 was commonly detected, prevalent in 59% of horses, followed closely by Streptococcus equi subsp. zooepidemicus (55%). Additional pathogens recognized included betacoronavirus, Campylobacter jejuni, Cryptosporidium sp., E. coli O157, equine adenovirus 1, equine rhinitis B virus, and others. The use of PCR data may overestimate the true prevalence of these pathogens but provides a sensitive overview of common pathogens present in healthy horses. Our results prompt the continued need for practical biosecurity measures at horse shows, both to protect individuals interacting with these horses and to minimize transmission among horses.


Subject(s)
Animal Husbandry , Cryptosporidiosis/epidemiology , Cryptosporidium/isolation & purification , Escherichia coli Infections/veterinary , Escherichia coli/isolation & purification , Horse Diseases/epidemiology , Animals , Cryptosporidium/genetics , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Female , Horse Diseases/diagnosis , Horses , Male , New York/epidemiology , Population Surveillance , Real-Time Polymerase Chain Reaction/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL